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Applications of lasers  as light sources  in in te r fe rometers  are analyzed. An experimental  c i r -  
cuit is descr ibed.  In ter ference  patterns obtained with a M a e h - Z e h n d e r  in te r fe romete r  using 
a l a se r - l ike  source  are  given. 

Double-beam in te r fe romet ry  is widely employed in qualitative and quantitative analysis of g a s -  
dynamic problems [1-3]; this has st imulated the fur ther  development of s tandard in te r fe rometer  a r r a n g e -  
ments .  It seems very  promis ing to employ lase rs  as sources  of monochromat ic  and coherent  light for 
in te r fe rometers  [5, 6]. The most  significant deviations of the charac te r i s t i cs  of a M a c h - Z e h n d e r  in te r -  
f e rome te r  f rom those of an ideal sys tem resul t  f rom problems with the light sources  ordinar i ly  used, which 
del iver  a spect rum of finite width and which as a rule is not coherent [1, 4]. The finite spect ra l  width of 
the source  r e s t r i c t s  the number  of contrast ing interference bands that can be obtained, while to obtain a 
coherent  field f rom a noneoherent  source  of finite extent it is neces sa ry  to employ aper ture  stops which, in 
the last analysis ,  result  in substantial losses in the light introduced into the in te r fe rometer .  Moreover ,  
since most  of the media investigated are nonstationary,  the coherence of the interfer ing beams depends on 
the time required for  photographic recording of the interference pattern.  As a consequence,  short  expo- 
sures  are  required  to r ecord  the pattern,  and this is very difficult to accomplish,  given the ordinary light 
sources .  

In te rms  of the above, a l ase r - l ike  source  would be ideal. The spec t rum emitted by a l ase r  is actu-  
ally so nar row that it cannot be measured  even by means of high-resolut ion spec t romete r s .  Heterodyne 
experiments  [7, 8] have shown that a H e - N e  laser ,  for  example, has a monochromic i ty  that reaches A;~/;t 

10-~4; owing to the finite spectra l  width, this gives a permiss ib le  in te r fe romete r  path difference of 5 
= ?t2/A)t ~ 101~ em. Lase r  emiss ion has a high degree of temporal  and spatial coherence,  while the time 
amplitude stabil i ty is also good [7]. Thus in ter ference  can be observed with very  significant optical-path 
differences for  the interfer ing rays with no reduction in band contrast .  

In the high-power  mode, these charac te r i s t i c s  make laser  emission preferable  to ordinary light- 
source  output for  in te r fe romete r  purposes .  

The availability of Q-switched pulsed l ase r s ,  generat ing giant pulses lasting only a few dozen nano-  
seconds more  or  less ,  expands the possibil i t ies of investigating both rapid p rocesses  and nonstat ionary 
p roces ses ,  such as those in turbulent media,  since any turbulent flow can be considered to be quasis ta t ion-  
ary within such short  time intervals .  

Utilization of l a se r - l ike  sources  in M a c h - Z e h n d e r  in te r fe rometers  is of interest  to those concerned 
with experimental  gas dynamics,  among other fields. We speak here  of a new trend in optics,  holography 
and, in par t icu lar ,  holographic in te r fe romet ry  [2, 8, 9]. Holography makes it possible to accomplish the 
total optical exper iment  - to r eco rd  both amplitude and phase information about the investigated object. 
Thus it is possible to co r r ec t  for the optical proper t ies  of the instruments  employed in the experiment after  
the experiment  has been completely run. For  example,  if we have a hologram of the investigated object, 
we can study it by various optical methods: in terference,  shadow, bright-point ,  etc. F rom the methodo-  
logical viewpeint, we can classify holographic in te r fe romet ry  as double-exposure in te r fe romet ry ,  which 
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Fig. 1. Basic optical setup: 1) H e - N e  laser ;  2) ruby 
crys ta l ;  3, 4) m i r r o r ;  5) plane-paral le l  flat m i r r o r ;  
6) osci l loscope;  7, 8) two-lens l a se r -beam input sys tem;  
9) side element of m e r c u r y - v a p o r  lamp; 10) upper hinged 
white-l ight element; 11) in te r fe rometer ;  12) ae r i a l -  
photography camera ;  13) neutral  f i l ter;  14) active fi l ter.  

yields both ordinary two-beam and differential in te r fe rograms  for two light beams intersect ing in neither 
time nor space,  with all the advantages entailed, and as in te r fe romet ry  with single exposure at two wave-  
lengths, which yields differential in te r fe rograms  car ry ing  information on the dispersion proper t ies  of the 
investigated object and permit t ing us to investigate, for example, concentrat ion and tempera ture  fields, 
provided the medium possesses  the re f rac t ive- index dispersion necessa ry  for the two-wavelength method. 
It is par t icu lar ly  noteworthy that we can multiply the sensit ivity of the [n te r fe rometer  method by using dif-  
ferential  in te r fe rograms  and success ive ly  superposing holographic patterns on a single hologram [8]. 

A type IT-14 M a e h - Z e h n d e r  in te r fe romete r  has been used in conjunction with a H e - N e  gas laser  
and a Q-switched ruby laser .  The gas laser  had an output power of about 15 mW at 6328 i .  The glass 
discharge tube was about 1.15 m long, with an inside diameter  of 7 ram. A direct ly heated oxide cathode 
and a tantalum anode were used as the e lect rodes .  The tube was supplied b y a  high-voltage rect i f ier .  In 
peak-power  mode, the discharge current  was 50 mA. A 30 kf2 ballast  r e s i s t o r  was connected in ser ies  
with the discharge tube. The discharge was initiated by a capaci tor ,  charged to twice the rect if ied voltage, 
and connected across  a portion of the ballast  r e s i s to r .  As a result ,  tr iple the supply voltage was applied 
to the discharge tube. The beam was taken out through a window set at the Brewste r  angle. One of the 
laser  m i r r o r s  was nontransmit t ing,  while the other  had a reflection factor  of 98.5% at 6328 A. The r e s o -  
nator  m i r r o r s  had radii  of curvature  of about 1.2 m, and operated under nearly confocal conditions. Thus 
numerous modes were generated simultaneously,  so that a fair ly uniform intensity distribution could be 
obtained in the l a se r -beam cross  section. The discharge tube and m i r r o r  were contained within a dust-  
proof rigid housing, and were installed on a shock mounting. 

The Q-switched pulsed ruby laser  was const ructed  as a single portable unit containing all the l ase r  
elements:  the laser  head, pumping-lamp supply and control sys tems ,  a c losed-loop water-cool ing sys tem,  
and so forth. The active element was a ruby 90 mm long and 7.5 mm in d iameter .  The modulator  was a 
cell filled with phthalocyanine dissolved in chloroform.  The ruby laser  had the following basic c h a r a c t e r i s -  
t ics:  emission wavelength 6943 ,~, energy emitted per  pulse, 0.1-0.3 J, nominal pumping energy 600 J; 
pulse length 50-70 nsec;  the device could be operated periodical ly at 2 Hz, or in one-shot mode,  with 
manual firing. 

Figure  1 shows the basic  a r rangement  used to introduce the laser  beams into the col l imator  of a s tan-  
dard type IT-14 M a c h - Z e h n d e r  in te r fe rometer .  Slight s t ructura l  modifications were made in the i l lumina-  
lion portion of the in te r fe rometer .  The upper lamp element,  containing the white-light source,  was made 
hinged. This made it very simple to introduce the laser  beams into the in te r fe rometer ,  without eliminating 
the possibil i ty of white-l ight operation. The two-lens sys tem was installed at the location of the f i rs t  con-  
denser  lens, which was then mounted at the bottom of the upper white-light element.  The two-lens system 
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Fig .  2. O s c i l l o g r a m s  of r u b y - l a s e r  pu l ses :  a) s ingle;  
b) double; c) t r ip le .  M a r k e r s  a re  100 nsec  apar t .  

conver t s  the nea r ly  p a r a l l e l  na r row beam of l a s e r  light into a p a r a l l e l  beam of the r e q u i r e d  width in a c c o r -  
dance with the opties  employed:  the f i r s t  sho r t - foeus  lens 7 of this s y s t e m  was negat ive ,  to prevent  the 
fo rmat ion  of a h igh - in t ens i ty  focused l a s e r  beam,  which could lead to breakdown in the a i r  or in the lens 
itself. 

A system of flat mirrors (Fig. 1) is used to introduce the beam from the gas or ruby laser into the 
two- lens  s y s t e m .  As a r e su l t ,  at the c o l l i m a t o r  focus we obtain an e x t r e m e l y  br ight  light sou rce  with a l -  
mos t  zero  equivalent  d imension .  The ruby l a s e r  is ad jus ted  by an au toeol l imat ion  method with the aid of 
the exposed  g a s - l a s e r  beam.  This involves the use of some of the light r e f l ec t ed  from p l a n e - p a r a l l e l  f lat  
m i r r o r  5; this l ight was d i r e c t e d  to the face of the ruby by means  of flat  m i r r o r  4, pe r pe nd i c u l a r  to the 
beam fo rmed  by the r e f l ec t ed  por t ion of the g a s - l a s e r  beam.  Af ter  the mul t ip le  re f l ec t ions  between the flat  
m i r r o r  and the ruby face were  combined,  it could be a s sumed  that the light gene ra t ed  by the ruby l a s e r  
would p ropaga te  along the s ame  path as that which had been followed by the exposed g a s - l a s e r  beam.  M i r -  
r o r  fo rm was then so ad jus ted  that the t r a n s m i t t e d  light f rom the ruby l a s e r  s t ruck  a photocel l  in the c i r -  
cuit 6 used to moni to r  the e m i s s i o n  pulse c h a r a c t e r i s t i c s .  

Expe r imen t s  with both ruby and gas l a s e r s  showed that despi te  the mu.ltimode na ture  of the emis s ion  
and, t he re fo re ,  the nonuniform d i s t r ibu t ion  of light in tens i ty  ac ros s  the beam c r o s s  sec t ion ,  i n t e r f e r o g r a m  
quality was quite satisfactory (see Fig. 3). 

Thanks to the high-intensity laser light, it was possible to use Isopanchrome-13 wide-format 19 cm 
aerial-photography film. In work with the helium-neon laser, exposures of from 1/1000 see to 1/25 sec 
were used, depending on the magnification of the interference pattern from the investigated objects. For 
the "g ian t -pu l se"  ruby l a s e r ,  we used a por t ion  of the light r e f l ec t ed  f rom the t r a n s p a r e n t  p l a n e - p a r a l l e l  
f lat  m i r r o r  5, a t tenuated by a fac tor  of ten by the neut ra l  l ight f i l t e r s  13. 

When l a s e r  emi s s ion  is used,  there  is a lmos t  no need for  compensat ion  of the i n t e r f e r i n g - b e a m  optical  
paths ,  or  for  e l imina t ion  of angular  devia t ions  and d i sp lacemen t s  of the beams  with r e s p e c t  to one another ,  
i .e . ,  the ins t rument  in i t ia l ly  r e q u i r e s  no at tention for  product ion of a h i gh - c on t r a s t  pa t t e rn .  When the pulsed  
l a s e r  is used,  a gas l a s e r  is used for  the ini t ia l  ad jus tment .  

F i g u r e  2 shows o s c i l l o g r a m s  of the emis s ion  f rom a ruby l a s e r .  Mult iple pulses  can be e l imina ted ,  
and pulse  length reduced  to 20-30 nsec by means  of an act ive f i l t e r  with ca re fu l ly  s e l ec t ed  t r a n s m i s s i o n  
coeff icient .  

F igu re  3 shows typical  i n t e r f e r o g r a m s  obtained in a long s e r i e s  of expe r imen t s  involving the i nves t i -  
gation of concent ra t ion  f ie lds  with a fore ign gas blowing sha rp ly  through a porous su r f ace  into a l amina r  a i r  
flow. The CO 2 seconda ry  gas was suppl ied  through a f lat  porous p la te ,  mounted flush in one wall of a square  
40 • 40 mm channel.  The main gas flow moved at a r a t e  of U~ -- 1.2 m / s e e ,  with the foreign gas suppl ied  
at W v 1 l i t e r / s e c .  The i n t e r f e r o g r a m s  c l e a r l y  show the zone of maximum concentra t ion  g rad i en t s ,  which 
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Fig. 3. I n t e r f e r o g r a m s  showing CO 2 in an air  s t r e a m ,  obtained with 
l a se r  light source  (the main  flow is f rom right  to left ,  while the CO 2 
enters  through the bot tom porous wall): a) adjus tment  for  bands of 
equal concentrat ion;  b, c) adjus tment  for  b road  and na r row bands of 
equal th ickness .  

becomes  fa i r ly  tenuous at large dis tances  f rom the porous sur face .  Analysis  of the i n t e r f e r o g r a m s  shows 
that the zone containing 100% concentrat ion of the foreign gas component  occupies a cons iderable  region.  

Thus the use of l a s e r - l i k e  sources  in i n t e r f e r o m e t e r s  cons iderably  s impl i f ies  the operat ions in-  
volved, while improving the re l iabi l i ty  and accuracy  of i n t e r f e r o m e t e r  r e s e a r c h .  
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